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Asymptotic Eigenequations and Analytic
Formulas for the Dispersion Characteristics
of Open Wide Microstrip Lines
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Abstract— Through the matched asymptotic expansions technique,
asymptotic eigenequations for the even and odd modes of an open wide
microstrip transmission line are derived. The eigenequations, and simplifi-
cations thereof which do not involve integration, can be solved easily for
the effective permittivity. Even though d/W is assumed to be small, the
solutions are good even if d/W=0.8 when compared with the numerical
results of Jansen [19]. From these eigenequations, asymptotic formulas for
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the effective permittivity can be derived which are excellent when d/ W=
0.2. When the frequency goes to zero, we reproduced the asymptotic
formula derived under the quasi-TEM approximation in [8]. The asymp-
totic analysis provides good physical insight into the problem, otherwise
unavailable from numerical analysis.

I. INTRODUCTION

VER SINCE the introduction of microstrip transmis-

sion lines, the field of microwave engineering has
been inundated with papers on the calculation of the
characteristic impedance and effective permittivity of a
microstrip transmission line. Due to the increasing use of
microstrip lines in the high-frequency regime, numerous
papers on the study of the dispersion characteristics and
higher order modes of the line have been published. Excel-
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lent summaries and reviews of the methods employed in
the studies are given by Mittra and Itoh [1] and Kuester
and Chang [2]-[4].

Analytic formulas for the quasi-TEM dispersionless
characteristic impedance of a microstrip line separated by
a dielectric slab was first derived by Wheeler [5], [6] and
recently by Poh et al. [7]. Mittra and Itoh [8] have also
employed the semianalytic generalized Wiener—Hopf tech-
nique to study the quasi-TEM characteristic impedance for
shielded microstrip lines. Most of the work done on the
dispersion characteristics of microstrip line has been
numerical in nature, though Schneider [9] obtained an
empirical formula for the dispersion characteristics. Fong
and Lee [10] and Nefedov and Fialkovskii [11] have de-
rived analytic theories for the dispersion characteristics of
wide microstrip line. However, their solutions are only
valid when the width of the strip is large compared to
wavelength so that coupling between the edges of the strip
can be ignored.
~In this paper, we use the method of matched asymptotic

expansions [12]-[14] to obtain analytic formulas and eigen-
equations for the effective permittivity of the lowest order
mode and the odd and even higher order modes of the
microstrip line. The method of matched asymptotic expan-
sions automatically takes into account the coupling be-
tween the edge fields of the line. Thus the eigenequations
and formulas, which assume simple forms, are valid down
to zero frequency. The eigenequations and formulas are
asymptotically good when the height-to-width ratio of the
line is small and the frequency is finite. The analysis shows
that a guided wave does not radiate, and provides better
physical insight into the microstrip transmission line prob-
lem which have been of continued interest for many years.

II. METHOD OF SOLUTION

An analytical solution to the problem of open microstrip
line shown in Fig. 1 can be obtained by the method of
matched asymptotic expansions. The method of matched
asymptotic expansions has been applied to solve other
microstrip problems [7], [15]~[17]. In this method, a small
parameter has to be assumed which is d/W in this case.
The space around the strip is then divided into three
regions; the interior region, the edge region, and the exte-
rior region. The method of matched asymptotic expansions
is intricate. The readers are urged to refer to [12], [13], or
[17] for the fine points of this method. We shall first
illustrate the main ideas by finding the leading order
solution in each region when d/W—0. We assume exp
(—iwt+tik,y) dependence for the guided fields in all re-
gions.

A. The Interior Solution

To find the solution in the interior region when d/W—0,
we emphasize the interior region with the following trans-
formation for the z-coordinate:

z=W38Z,  whered=d/W. (1)
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Fig. 1. Geometrical configuration.

Under the transformed coordinate, the leading order solu-
tion in the interior region resembles that of a parallel-plate
waveguide. Considering only even modes with no Z-
variation, it is

Elz('x)NEl(g)(x):EOCOS(klx‘x)
ik
®

(2)
(3)

X Eosin (ky,x)

Hl)(x)NHl(g)('x):_— °

(4)

) |
H(5)~H(x)= 22 Eyeos (ki)

where
and
ki =wype; .

The preceding field is seen to satisfy the boundary condi-
tion AXE;=0at Z=0 and 1.

B. The Edge Solution
The edge region is emphasized by the following coordi-
nate transformation:
=W8Z  x=W(1+8X). (5)
Maxwell’s equations can then be written in the following
form convenient for iteration:

v X, =iouWdh,, (6a)
v, Xh, = —iwe,Woe,, (6b)
V €1y :inSWﬁX}Tm +iky8Wéi5 (6C)
V. h, = —iwe,SWPXE, +ik §Wh,  (6d)

where the subscript i indicates the solution in layer i of the
edge region, the subscript s denotes fields transverse to the
y-axis and V =X(8/9X)+2(3/39Z). When 8- 0, the lead-
ing order transverse fields are curl-free. The solution is thus
a static solution involving semi-infinite half-plane, which
can be solved by the Wiener— Hopf technique. The detail of
deriving the solution in such a problem is shown in [17] or
[18]. Hence, the leading order transverse fields are given by

&P =—B,v 2 (,)
h_fg) = _BZ vs¢l(0)(€r: 1)

(7)
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In the preceding, ?©(¢,) and ¢ (¢, =1) are electric and
magnetic potentials given in Appendix A.

The leading order j-components of the fields are of O(8)
as can be seen from (6). Thus we let ¢, ~8e/? and &, ~
8n. By substituting (7) into (6¢c-d), we deduce that

e9( X, Z)=iWB,

B
Jngapc=n-k20()| ©

) B
hfoy)(X, Z):lWB2[w€i—B_;¢i(0)(£r)_kylpz(er = 1)] +C1

9)
where B,, B,, and C, are as yet undetermined constants. In
order to have e® (Z=1, X<0)=0, we arrive at B, /B, =
k, /wp, since ® (Z=1, X<0)=1. To determine the other
unknowns in (9), we attempt an asymptotic matching of (9)
to the interior solution. From (4), we obtain the edge
expansion of the interior solution H{9, viz.,

ik, E
HO(W(1+6X), Z)~— ’—:‘”—"sin k W

ik

2
w:EOcos(k,xW)'aWX, 8-0.

(10)

Furthermore, the interior expansion of the edge solution
(9) can be obtained by the asymptotic expansion of the
integral (A.4) as is done in [15]-[18]. The result is

1y W8 ’

Z )~iB2ky“ k2 8WXx+C,
8-0.
(11)

Comparing (10) and (11), the matching condition de-
termines the values of B, and C,. We thus have

+exponentially small terms,

B,=—Eycosk, W

B =—ELE cosk, W
2 op 0 1x

ik
C,=— w;:‘ Eysink, W

(12)
which determines the leading order edge solution uniquely.

C. The Exterior Solution

When 60, the leading order exterior solution has to
satisfy the boundary condition AX Ey(x, z=0)=0, |x|<W
and | x|> W, and it has to match asymptotically to the edge
solution near the edge. The exterior expansion of the edge
solution can be deduced by the asymptotic expansions of
the integrals [15] in (A.1) and (A.4) for substitution in (8)
and (9). The result is

x—W :z
€oy

W’%)NO(”’ 80 (13)
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and
x—W z W
hoy(_—Wb‘ T )~ o Eycos kW
\2 172
Lo [(x—w)*+2%]
e Wé
+(k3A—k§(1nw+1))]
iklx .
" E,sin k| W (14)
where
§ 1—e¢, \*
A=—2¢, ( L ) In(k)
iy \ 1€,
+e¢,In7+(e,—1)In2+1 (14a)
and
k,=\k3—k2. (14b)
The leading order exterior solution is hence
E0y~8E(§g)
H0y~6H(§‘;) (15)

where E{) =0 and

Eycos(k, W)
Hé‘;)(x. Z): —L-zw'_“l——‘—

k[ HE (kopy)—HEO (koo )| W (16)

o, =y (x+W) +z?
P2 :\/(x"W)z“'z2

and H{"(x) is the Hankel function of the first kind.
Equation (16) resembles the field due to two parallel
magnetic line sources. It is also uniquely determined by the
boundary and matching conditions.

We can deduce the edge expansion of H,, which is

where

iSWEcosk W

, {1( [(=w)+:9"” )

w

k w i
———-—p — —
+In 5 +y 2

-[1——H(§‘)(2ka)]} (17)

where vy is the Euler constant. Comparing (17) and (14), we
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can deduce an eigenequation from the matching condition
given asymptotically by

kW
Ky tan (K, W)~8LV{ 3[ :

+y—-i%(l—H(§”(2ka))]

—kia +k§(1nw+1)}, 8-0. (18)

Since k,, and k, are functions of k,, (18) can be solved
asymptotically for k, for different modes. The effective
permittivity ratio, e, :k§ /k2, is given approximately by

2 ¥ -
€,~€ —("—f’) -l—é{az[ln(SaW)er—I—KO(ZaW)}
e 1774 7 2

+A—1€_3(1n77+1)}, 8§-0 (19)

where W=k,W, k,=\/e, — (na /W), a= VK2 =1, Ki(x)
1s the modified Bessel function of the second kind, and # is
the order of the modes on the microstrip line. The preced-
ing is an asymptotic formula for the €, in the first ap-
proximation.

The higher order approximations can be carried out
similar to [15] and [17]. We can derive eigenequations for
both the even and the odd modes. The details are il-
lustrated in Appendix B. The resulting eigenequations for

the even and odd modes are given by

~ ~ ~ *1

k kW 2

F ufan = ) ~§a2(1n3+H)i(§)
W ™ fr

ee,—1

2
20WK,(2aW )+ (g )

r

: { "‘W(‘:i' -1 [ 2;W iKl(ZaVV)G]

+ a€W [24+In2—¢ ¢, (In27> —|—2)]
K(ZaW)+7r2a;V( . )

-exp(-2aW)iI(ee)}, 80 (20)

where 7 is as defined before, a=ye, —1, k,, = f;=¢,,
G=In(aW/2)=K,2aW )+y (20a)

H=G+[A—e,(In7+1)]/a?

8 r

I(e,)= a3W/2“Wd {

r
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In the preceding, the upper sign is chosen for the even
modes and the lower sign for the odd modes. The cigen-
equations can be solved approximately giving the effective
permittivity ratio to order 8

€e~€,—( (n+1/4%1/4)7 )2

w
2
+8%(1n8+H)+(

adlnd )2

7

§\? o o= - 1
+ ;) Inéd{a 2G+¢xWK1(2aW)+§

+[4— (262 =1)(In7+1)]

I

ke, —1 - -
+ 2aWK,(2aW)
€

r

2
-i-(%) az[GiaWK1(2aW)—lnw—%]H
aW k~2€r~1
+ (% )[ L iKl(ZaW)G}
2aW

r

+ 2@ 1-

r

r )exp(—zavf/)

aW

€,

[24+n2—K%,

4w2

-(In27%+2)| K, (200 )+

[nd+HP+1({e?—1 )}, §-0- (21)

In the preceding W, /€V, a, and n are as defined for (19).
The integral terms I in both (20) and (21) are small and
can be neglected for most practical considerations. When
w—0, W-0, (21) reduces to the result of [7], [17] the
quasi-TEM approximation for the lowest order even mode.

III.

In Fig. 2, the asymptotic eigenequation (20) is solved for
the lowest order mode and compared with the results of
Jansen [19] which have been accepted as the more reliable
of the published numerical data [2], [3]. The set of our
curves, labelled as “eigenequation 17, corresponds to ne-
glecting the integral term in (20). We note that the dis-

NUMERICAL RESULTS AND DISCUSSION

K, (1)K, QoW —u)—K,(2aW )K,(2aW —u)—

+K:2aW—u)=+

Kl(zaW) = 1
u aW—u)

+[Ko(u)tK0(2aW—u)]K0(2aW—u)}. (20b)
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crepancies that ensue are small, and incidentally, it agrees
better with Jansen’s numerical results compared to when
the full eigenequation (20) is solved for €, (eigenequation
2). Even though the asymptotic eigenequation (20) is good
when § -0, we note that excellent agreement with numeri-
cal result is obtained even when §~0.8.

In Fig. 3, the asymptotic eigenequation (20) is solved for

the effective permittivity of the even and odd modes. The'

results agree very well with Jansen’s. For such a value of 8,
the results are not drastically affected even if the integral
term in (20) is neglected. We note that the asymptotic
formula is excellent for such a § for the even modes while
the asymptotic formula for the odd mode is good when the
frequency is lower.

In conclusion, we have derived through the method of
matched asymptotic expansions, asymptotic eigenequations
for the even and odd modes on a microstrip line. For
convenience, we can neglect a complicated term in the
equations and the resultant equations, which are simple
and do not involve any integration give results which are
valid even when d/W=0.8. As opposed to past methods
whose eigenequations usually involve integrations, our ei-
genequation contains modified Bessel functions whose
polynomial approximations are well known [20].

From the analysis, we notice that for a guided mode, €,
is always real if ¢, is real, implying that a guided wave does
not radiate if its phase velocity is slower than that of region
0. This is analogous to the guided modes in a dielectric
slab. However, equation (20) does not preclude the possi-
bility of complex roots for real €, analogous to the leaky
waves in a lossless dielectric slab. Also when 6-0, the
leading order €, is that of a rectangular waveguide with
vertical magnetic wall. The first order correction is of
O(61n8) which vanishes slowly when § —0. This indicates
the importance of the fringing field whose effect lingers on
when §—0. From our exterior solution, we note that the
exterior fields are describable by cylindrical waves. When
the wave is guided, the cylindrical waves are evanescent in
nature representable by modified Bessel functions. This
explains the presence of modified Bessel functions in the
eigenequations. The decay of the evanescent wave from the
microstrip line is proportional to the frequency and
the contrast in the phase Velocity of the guided wave and a
wave in _medium zero, in other words, the decay rate
a~w1/,u(e —1)¢y. So if the frequency is high, and/or
€, — 1 is large, the shielding of the microstrip line is unnec-
essary since the field is localized around the microstrip line.
We can account for the dielectric loss in our approach by
letting €, be complex, since in our analysis, €, is not
restricted to be pure real. In our analysis, we have ap-
proximated our edge solution with a two term quasistatic
approximation. This is legitimate as long as the frequency
is not too high such that the height of the microstrip line is
not comparable to the wavelength. Our formula is asymp-
totic in the sense that for w, W, and ¢, fixed, the result is
asymptotically good when d—0.

APPENDIX A-— POTENTIALS FOR EDGE SOLUTIONS
The potential ¢”(¢,) and ¢O(¢,) of (7)—(9) are given as

o G_(A,g,
(0) i
9%"(<;) 277f LAG (0,¢)

~exp[—a(2—1)+i}\X]d>\

onf N o G_(Ae,)
#7(e,)= 277./ wAG_(0,¢,)

'[exp[a(Z—l)] —exp|[—2a—a(Z—1)]
l—exp—2u

(A1)

-exp [iIAX]dA

o v 1 = G(Ag)
M=z [ o NG_(0,¢,)

[eexp[iAX—a(Z—1)]+1] dA

0 o G_ (}\ E)
V(e )—2wf 0 NG_(0,¢,)

[ exp[a(Z—1)] +exp[—2a—a(Z—1)]

(A2)

(A3)

1—exp—2a«a

-exp[iAX]—l] dx (A4)
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where a=1lim,_oVA>—b*, and G_(A,¢,) is described in
[17]-[18]. We note that

Y _

X~ az

0 __ 23

0Z X’ (A3)

APPENDIX B— HIGHER ORDER APPROXIMATION

The forms of higher order solutions in the exterior region
can be deduced by observing the higher order exterior
expansion of the edge solutions which are derived to be
(15, [17]

NS
O\ ws > Wws

~—i8W

Eycos(k, W)

éIné

r

+kZIn(p, /8W )+ =

)(x /814

(k22—
(0 Pz

(kg k3,)

~—tan‘ _ZW+X~2W
0 X P2

oW

r

ln(Pz/W)}

| (k3A—K2e,(In7w+1))

2 W—I—kow(c -1)= H
P> 5
—i%ﬁEOsink,xW 8-0 (B.1)
(%7 )
“o\"ws W
k,Eycos(k, W SW
iy Eocos (K, ){51115( ¥
7 7€, o e,
N xXx=W .z
(e, 1)[ 7 tan™! —>
z., pp w(x—W)
) )
oW z
+ e, [A—e,(lnw-H)]p—%} (B.2)
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where 4 and p, are defined previously. This suggests that
the exterior solutions are of the form

Hy, ~8H) +8In8H() +8°H) (B.3)
and
~8%IndE() +6%E(D. (B4)

The boundary conditions for the fields can be expressed
in terms of the y-components of the fields since they
uniquely determine the other components through the
equation

- i

-t

Ets—kiz k VE

sy

+wp,vs><17,y). (B.5)

For example, the vanishing of the tangential E-fie]td in
layer-1 at z=0 implies that

E, (z2=0)=0

9

<= H,,(2=0)=0. (B.6)

The continuity of tangential £ field at z=4 is the same as

Eo (2=d)=E,,(z=d) (B.72)

0

2 —
k2l B, (:=a)

d 0
ot Hy (=) | =k [, 2 B (=)

d
wMg;Hoy(sz)]
(B.7b)

where k, is defined in (14b) and k,,=k{—k?. The
contmulty of tangential H field at z= d for |x|>W after
using an equation dual to (B.5), implies that

|x|>W

H, (z=d)=H,(z=d), (B.8a)

0

0
kz kyaHly(Z:d)+w€0€rEE1y(Z:d)]

0 0
:klzp[kyé-;HOy(z:d)+weo$E0y(z:d)] ,

|x|>W. (B.8b)

By Taylor expanding (B.7) and (B.8) about z=0, we
substitute in the perturbation series suggested by (B.3) and
(B.4) for fields in layer O and 1 (except we assume that
E(9 #0). By matching terms of the same order, we can
show from (B.7) that

d
— H)(2=0)=0

0

(1)
32 H{)(z=0)=0,

all x (B.9a)
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and
kW(k?—k2) a2
___H(z)( —0) y (12 0) ]
w‘uklp ava
62
EQ(z=0)-W_

k2
| HO(z=0)— k°"H<0>(z 0)]

1p

‘ allx. (B.9b)

By making use of the result of (B.8) and Helmholtz wave
equation, we conclude that (B.9b) simplifies to
9 114 ( 1—¢, )

E-Z—Hé?v)(x, z=0)=— 2
p

€

02

a—z‘H(o)(x, Z:()),
For | x|<W, we can show from (B.7a) that (3 /9z)E{)(z=
0)=0. Hence, the boundary condition for (B.9b) is
iH(z)(x z=0)= W%H(O)(x z=0)

+k WHS)(x,2z=0),

|x|>W. (B.9c)

|x|<W. (B.9d)

Similarly, from (B.7a), (B.8), and Maxwell equations, we
have

EQ®(z=0)=0

E{)(z=0)=0, allx (B.10a)
and
: =6\ or. .—
E(%)(Z:O): tw;LW( . )HOx(x,z—O), |x|>wW
0, x| <W.
(B.10b)

It can be shown that the y-components of the first order
fields that satisfy the boundary conditions (B.9), (B.10),
and the matching conditions provided by (B.1) and (B.2)
are

k WZ2E,cos(k, W)
_p 0 Ix
Hé}’) - 2wpe, (k%_k)%(’)
[ (00 )+ S0 )| 1)
1
2
E = k,k,W2Eycos(k, W ) (e.—1)
Oy 2, r

(ZH0O(e0)+ ZHE () ). (B12)
Py 143

The preceding resembles fields due to two parallel lines of
magnetic and electric dipoles. The solutions of the second
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order fields that satisfy boundary conditions (B.9) and
(B.10) and the matching condition provided by (B.1) and
(B.2) are derived as

k}W?2Eycos(k W)

(2 —
Hg, diwp

: {kg f_Wde[Hél)(kp(WwLb))
k2 _k2
~HE (b (=) B (ke )+ =

r

'[f_Wde[Hfl)(kp(W+b))+H1<‘>(kp(W~b))]

> —b f db
x+W
'[(W+b)

4ik3 (

dk
7rk§ )f k2
-sin (k W )exp (ik x+ik,z)
2i
7k €

p-r

[k3(A+In2) =K%, (In27+1)]

x—W

){2 1)[ db

[HO(k, (W+b))+H1(”(k,,(W—b))]—,Hl‘“

(e, “Uf

1 z
W=t o,
+

[

1
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o
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-(k '

db ﬁ_b —I{(1 (kppl)

Hl( )(kpp2 )] - (‘rk__l)

o

W x—W

HO(k,p,) - Hw(k,,pz)]

L1 P2

where p'=y (x—b)2+zz, where b is the integration vari-
able in (B.13) and (B.14), and k,=yki—k2. The last
integrals in (B.13) and (B.14) are needed to cancel the
infinite terms in the preceding integrals and the last terms
are eigensolutions needed to satisfy the matching condi-
tions. We note that the zeroth- and first-order fields are
due to the sources at the edges of the microstrip line while
the second-order fields have contributions from sources
distributed over the strip as well. With the higher order
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exterior solutions derived, we can find the higher order
edge solutions from the edge expansions of the exterior
solutions, which are

Ho, (W+3WX, SWZ)~8HD +86*InSHQ +82H?
SWE, 8k, W
~ — IBWEscosk, ¥ 0°°Sk1XW{k§[1n(X2+z2)1/2+1n—~§

TWH
+ 12’1 (H® 2k, W )~ 1)+y] +61nd

Ke)

ik W (kZ—
2e

H®(2k, W)+8

fdb

r

[ H§O (k, (W+b)) ~ HE (e (W—=D))]

rn'kZW
de

8
-HO(k,(W—b))+ (k2 —kZ,)

A " av| HO(
4

—Hl(‘)(kaW)Hl(l)(kp(W—b))

r

k,(W+b))H"(k,(W—b))

2i HO(2k,W)

=t (1) —5))?
ak,  Wrh (k,(W=0))

4
2
7k (W—b)

2 6ka 2
7(ln 2 +Y) +'zrzkgW

ik kéW er—l .
8 92 ( . )exp(Zlka)

HO(2k,W)
- k

p

[Hé‘)(2ka)—

SWik
2e

2 [k3(4+1n2)— k%, (In27+ D] HO (2K, W)

r

Z
—kZ, XIn(X*+2*)"*+Ztan™! 3

e, X?+2z?

l—e,) Z 1

— 2412
T Wer[koA KZe,

k3
L WH® 2k, W)

yor

ik k2
+6WT”H1(”(2ka)
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and

Eo, (W+8WX, 8WZ)~8In8E) +82ES)

idk WE,cosk, W

~

2
7€,

X

Xtan ' Z — ZIn( X2 +22)"
(e,—1)
X2 +272

7 X
X*+27?

—(e,—1)

Z

+ [A'—‘Er(ln‘ﬂ+ 1)] m

W ”(e ~1)H®(2k,W)

-(tan_lé—w )}, 8-0.

From (B.15) and (B.16), we deduce that the edge solutions
are of the form

(B.16)

h,, =6hQ +82hD (B.17)
e, =8e) +8%(). (B.18)

The first-order edge solutions for the y-component of the
fields that satisfy (6), the boundary condition and the
matching conditions provided by (B.15) and (B.16) are

61(}1:) :kpkszEOCOS (kle )Hl(l)(kaW)
. ['I)i(l)(fr - 1)_q)l(1)(€r)] (B.19)

2
R =

Eocos(kle)H“)(2ka)
Jr290(e,) — k24O (e, =1)]  (B20)
where

1 1 1
¢sl><<,>:;¢s°><e,>+5(1—;—2)

r

‘I’?)(c,)— ()~

§(e,)= —% (e,)=

U= 5 40(e) 5 (3.21)

To find the higher order interior solutions, we expand
the edge solutions (B.17) and (B.18) in the interior region.
It is found that only exponentially small higher order terms
are induced by the edge solutions. Therefore, the interior
solution is as given by (2)—(4). With the edge solution for
the h,, component given by (B.17), we can derive its
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exterior expansion leading to
ho(X,2Z)

Eycos (kW)
wpT

~O8h() +8%hG) ~ —idW

)
'{kgA—k)%(ln'”'*'1)+k31n(X2+22)‘/2_ 0 kye,

7E,

-2 12, _X 2 y2y1/2
[X2+22 X T )
1

me

[k%z‘l—k2 J(nz+ 1)] _2;;5

r

ik
+kim(e,—1) +8W " H>(2k, W)

X*+z?

k% —kZe,

0( y 1n(X2 ‘22)1/2
ksd )
+———ki(ln7+1)—kjmX

.k : .
- ’w: Eysin(k, W), (X2+2%)5w. (B22)

Comparing (B.22) and (B.15), and invoking the matching
condition, we can deduce an asymptotic eigenequation. We
can perform a similar analysis for. the odd modes. The
resultant asymptotic eigenequations are as given in (20).
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