
IEEE tRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 9, SEPTEMBER 1981 933

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. Krazer, Lehrbuch der Theta funktionen. New York: Chelsea,

1970, pp. 65-77, 183-193.

F. Brioschi, “Sur diverses equations analogues anx 6quations mod-

ulaires clans la theorie des fonctions elfiptiques,” C. R. A cad. Sci.
(Paris) vol. 27, pp. 337-341, 1858.
M. Eiichler, In~roduction to the Theory of Algebraic Numbers and

Funcdons. New York: Academic Press, 1966, appendix to

chapter 1.
M. David, “Sur la transformation des fonctions ~,” J. de Math.
Pures App[. ser. 3, vol. 6, pp. 187-214, 1880.

L, J. Mordell, “The value of the definite integnrf (Rme ““+ ’~(ec’+
d) dt,” Quarl. J. Pure Appl. Math., vol. 48, pp. 329-342 (1917).
V. M. Maksimov and S. M. Mikheev, “Investigation of the resultant
ampfitude-phase distribution of the field in a regular multimode
transmission line [Russian],” Radiotekh. Elektron., vol. 23, pp. 1386
-1393, 1978.
A, N. Bmtchikov and A. Yu, Grinev, “Transformation of field

distributions in planar multimode light guides,” Izo. VUZ Radiofiz.

vol. 23, pp. 1322-1329, 1980; (in Russian, English transl. in Radio-
phys. Quantum Electron. to appear).
B. C. Berndt, “On Gaussian sums and other exponential sums with
periodic coefficients,” Duke Math. J., vol. 40, pp. 145-156, 1973.
C. Yeh, “Optical waveguide theory,” IEEE Trans. Circuits Systems

VO1. 26, pp. 1011-1019, 1979.

David C. Chang (S’65-M67-SM’76), for a photograph and biography
please see page 842 of this issue.

Edward F. Kuester (S’73-M76) was born in M.
Louis, MO, on June 21, 1950. He received the
B.S. degree from Michigan State University, East
Lansing, MI, in 1971, and the M.S. and Ph.D.

degrees from the University of Colorado, Boulder,

in 1974 and 1976, respectively, afl in electrical

engineering.
Since 1976, he has been an Assistant Professor

in the Department of Electrical Engineering at
the University of Colorado, Boulder. His re-

search has included the electromafmetic theorv of

open waveguiding structures in optics as well as at microwave frequen~ies.

Dr. Kuester is a member of the Optical Society of America and ,an
“------ ..-

associate member 01 UK M Lomrmsslon B.

Asymptotic Eigenequations and Analytic
Formulas for the Dispersion Characteristics

of Open Wide Microstrip Lines
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Abstract — Thrmmh the matched awm~totic exoansiorls techrriwe,

asymptotic eigenequations for the even and odd modes of :an open wide

microstrip transmission line are ‘derived. The eigenseqmrtiorrs, and skrrplifi-

cations thereof which do not involve integration, can be solved easily for

the effective pcrmittivity. Even though d/W is assumed to be smafl, the

solutions are good even if d/W= 0.8 when compared with t-he numerical

results of Jansen [19]. From these eigenequations, asymptotic formulas for
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the effective permittivity can be derived which are excellent when d/ W’CX

0.2. When the frequency goes to zero, we reproduced the asymptotic

formula derived under the quasi-TEM approximation in [8]. The asymp-

totic anafysis provides good physical insight into the problem, otherwise

unavailable from mrmericaf analysis.

1. INTRODUCTION

E

VER SINCE the introduction of microstrip transmis-

sion lines, the field of microwave engineering has

been inundated with papers on the calculation of the

characteristic impedance and effective permittivit y of a

microstrip transmission line. Due to the increasing use of

mkrostrip lines in the high-frequency regime, numerous

papers on the study of the dispersion characteristics and
higher order modes of the line have been published. Excel-

0018 -9480/81 /0900-0933 $00.75 @1981 IEEE



934 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 9, SEPTEMBER 1981

lent summaries and reviews of the methods employed in

the studies are given by Mittra and Itoh [1] and Kuester

and Chang [2]-[4].

Analytic formulas for the quasi-TEM dispersionless

characteristic impedance of a microstrip line separated by

a dielectric slab was first derived by Wheeler [5], [6] and

recently by Poh et al. [7]. Mittra and Itoh [8] have also

employed the semi analytic generalized Wiener– Hopf tech-

nique to study the quasi-TEM characteristic impedance for

shielded microstrip lines. Most of the work done on the

dispersion characteristics of microstrip line has been

numerical in nature, though Schneider [9] obtained an

empirical formula for the dispersion characteristics. Fong

and Lee [10] and Nefedov and Fialkovskii [11] have de-

rived analytic theories for the dispersion characteristics of

wide microstrip line. However, their solutions are only

valid when the width of the strip is large compared to

wavelength so that coupling between the edges of the strip

can be ignored.

In this paper, we use the method of matched asymptotic

expansions [ 12]–[ 14] to obtain analytic formulas and eigen-

equations for the effective permittivity of the lowest order

mode and the odd and even higher order modes of the

microstrip line. The method of matched asymptotic expan-

sions automatically takes into account the coupling be-

tween the edge fields of the line. Thus the eigenequations

and formulas, which assume simple forms, are valid down

to zero frequency. The eigenequations and formulas are

asymptotically good when the height-to-width ratio of the

line is small and the frequency is finite. The analysis shows

that a guided wave does not radiate, and provides better

physical insight into the microstrip transmission line prob-

lem which have been of continued interest for many years.

II. METHOD OF SOLUTION

An analytical solution to the problem of open microstrip

line shown in Fig. 1 can be obtained by the method of

matched asymptotic expansions. The method of matched

asymptotic expansions has been applied to solve other

microstrip problems [7], [ 15]–[ 17]. In this method, a small

parameter has to be assumed which is d/W in this case,

The space around the strip is then divided into three

regions; the interior region, the edge region, and the exte-

rior region. The method of matched asymptotic expansions

is intricate. The readers are urged to refer to [12], [13], or

[17] for the fine points of this method. We shall first
illustrate the main ideas by finding the leading order

solution in each region when d/W+ O. We assume exp

(– i@ti- ZkyY) dependence for the guided fields in all re-

gions.

A. The Interior Solution

To find the solution in the interior region when d\ W- O,

we emphasize the interior region with the following trans-

formation for the z-coordinate:

z = W8Z , where 8 = d/ W. (1)

z

IEXTERIOR REGION
LAYER O

u-a c~, p

I w -i

EDGE
EOGE REGION

REGION d
INTERIOR REGION el=crco, p LAYER

~Y

//////[////////////m///////////////////////* /x

u-co

Fig. 1. Geometrical configuration.

Under the transformed coordinate, the leading order solu-

tion in the interior region resembles that of a parallel-plate

waveguide. Considering only even modes with no Z-

variation, it is

E,=(x) -Ef:)(x)=Eocos( k,xx) (2)

ik, .X
H, Jx)-H$)(x)= – ~EOsin(kl.~) (3)

HIX(x)-Hf~)(x) =$ EOcos(kl,x) (4)

where

klX=/k~–k~

and

kl=ufi.

The preceding field is seen to satisfy the boundary condi-

tionti X~l=O at Z=O and 1.

B. The Edge Solution

The edge region is emphasized by the following coordi-

nate transformation:

~= w~z X= W(l +8X). (5)

Maxwell’s equations can then be written in the following

form convenient for iteration:

V, X2,, =iwpW8~,Y (6a)

V ~XEZ~ = –iuc,W82,Y (6b)

V ~e,y = iupd W} X ~z~+ iky8 WEi, (6c)

V,h,y = –iwc,8Wj XCz, +iky8~-z, (6d)

where the subscript i indicates the solution in layer i of the

edge region, the subscript s denotes fields transverse to the

Y-axis and V. ‘K~/~W+~(~/~Z). When 8+0, the lead-
ing order transverse fields are curl-free. The solution is thus

a static solution involving semi-infinite half-plane, which

can be solved by the Wiener– Hopf technique. The detail of

deriving the solution in such a problem is shown in [17] or

[18]. Hence, the leading order transverse fields are given by

#0= –Bl V,@fO)(~, )

;;)=–B2V, +: 0)(6,= 1). (7)
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In the preceding, @jOJ(c<,)and +j”)(c, = 1) are electric and and

magnetic potentials given in Appendix A.

The leading order ~-components of the fields are of b(~) ~OY x – W &

( )

i8Ww – —EOcosklxW
as can be seen from (6). Thus we let eiY = i3ej~l and h iY = W(? ‘ Wil Tap

&’z$~).By substituting (7) into (6c-d), we deduce that

e(o)( X, Z)=iWB1
lY

I (

k2~n [(X-W)2+Z2,”2
P W8

[ I
L’

. W$lj”)(t, = l)–kY@}O)(c, ) (8)

+(k~A–kf(lnm+ l))

[ 1 1~+f”)(c)—k+(c=1) +Clh(OJ(X, Z)=iWB2 ‘EiB2 1 r Y I r
ZY iklX— —Eosin klXW

(9) Up

where B], B2, and Cl are as yet undetermined constants. In where

order to have e(o) (Z= 1, X< O)= O, we arrive at Bz /B1 = I-Jk
kY /Qp, since @~~ (Z= 1, X<O) = 1. To determine the other A = – 26, j

()~=2 1+6,
in(k)

unknowns in (9), we attempt an asymptotic matching of (9)

to the interior” solution. ‘From (4), -we obtain th~ edge

expansion of the interior solution llf~), viz.,

iklXEo
H$J(W(l+8X), Z)-- Tsink1XW

– ~EoCOs (k1XW)8WX, 6+0.

(lo)

Furthermore, the interior expansion of the edge solution

(9) can be obtained by the asymptotic expansion of the

integral (A.4) as is done in [ 15]–[ 18]. The result is

~{OJ
(

x—w
—,Z

Ws )
_ iB2ky” lk :X8WX+ cl

+ exponentially small terms, 8+().

(11)

Comparing (10) and (11), the matching condition de-

termines the values of Bz and C,. We thus have

B,= –EocosklXW

~,= _ ikl.
—EosinklXW
6Jp

(12)

which determines the leading order edge solution uniquely.

C. The Exterior Solution

When 8+ O, the leading order exterior solution has to

satisfy the boundary condition A X ~o(x, z = O)= O, \x I< W

and Ix I> W, and it has to match asymptotically to the edge

solution near the edge. The exterior expansion of the edge

solution can be deduced by the asymptotic expansions of

the integrals [15] in (A. 1) and (A.4) for substitution in (8)

and (9). The result is

(

x—w z
eOy

)
— — “o(a),

wi3 ‘ Wd
6+() (13)

935

(14)

+c,ln7r-i- (c, --l)ln2+l (14a)

and

kP=/~. (14b)

The leading order exterior solution is hence

Oy-t3E~~)E

Hoy _~H& (15)

where E$? = O and

Eocos(klXW)
H&(x, z)=

2LJp

.k;[H~l)(kPpl )–H$l)(kPp, )]W (16)

where

{pl= (X+ W)2+Z*

/p2= (X– W)2+Z*

and H$)(x ) is the Hankel function (of the first kind.

Equation (16) resembles the field due to two parallel

magnetic line sources. It is also uniquely determined by the

boundary and matching conditions.

We can deduce the edge expansion of Hoy which is

HOY- –
i8WEocos klXW ~

kP
7rup

. ,n [(= W)2+Z2]”2

{(
w )

kPw ~
+ln~ +Y–;

“[1 –H$)(2kPW)]

}

(17)

where y is the Euler constant. Comparing (17) and (14), we
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can deduce an eigenequation

given asymptotically by

from the matching condition

k, Ttan(klXW)-~
{[

kPW
k: lnd+ln~

+y-i:(l-H$’’(2kPW))]

1–k&+kj(ln7r+l) , 8+0. (18)

Since k,. and kP are functions of kY, (18) can be solved

asymptotically for kp for different modes. The effective

permittivity ratio, c, = k~/k~, is given approximately by

‘.-’=(;)2+:{”2[’4%7+’+ KJ2”4
}+A–~j(ln~+l) , 8+() (19)

rwhere l$’=koW, ~Y = (,–(nn/W) , a=~~, Ko(.x)

is the modified Bessel function of the second kind, and n is

the order of the modes on the rnicrostrip line. The preced-

ing is an asymptotic formula for the ~, in the first ap-

proximation.

The higher order approximations can be carried out

similar to [15] and [17]. We can derive eigenequations for

both the even and the odd modes. The details are il-

lustrated in Appendix B. The resulting eigenequations for

the even and odd modes are given by

~ ~Jtan(~lx~)]” d

()

f32

w
-—a2(lntl+H)* ~

T

Ce(r —l 82

()
. —2CJFK, (2(XFF)+ ;

Cr

“{

CYw(Eefr-l) 1

[
— &Kl(2ati)G

Cr 2aw 1
*w[2A+ln2-t,t,(ln27r2 +2)]

e,

“ aw

‘( 1

1–6,
.K, (2aw)*7r y y

r

1.exp(–2aJ&)51(t=) , 8+0 (20)

where W is as defined before, a = ~~, ~lX = ~~,

G=ln(a~/2)*Ko(2 aJ&)+y (20a)

H= G+[A–te(lnfi+ l)]/a2

In the preceding, the upper sign is chosen for the even

modes and the lower sign for the odd modes. The eigen-

equations can be solved approximately giving the effective

permittivity ratio to order 82

(

(n+l\4T1/4)%’ 2
ce-fr —

w i

.(ln2m2+2)]K,(2 a@)+%

In the preceding W, iv, a, and n are as defined for (19).

The integral terms 1 in both (20) and (21) are small and

can be neglected for most practical considerations. When
u +0, ~+ (), (21) reduces to the result of [7], [ 17] the

quasi-TEM approximation for the lowest order even mode.

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 2, the asymptotic eigenequation (20) is solved for

the lowest order mode and compared with the results of
Jansen [19] which have been accepted as the more reliable

of the published numerical data [2], [3]. The set of our

curves, labelled as “eigenequation 1”, corresponds to ne-

glecting the integral term in (20). We note that the dis-

1–6,(,

[

K,(2aJ&)
K1(u)K1(2aJ’i-u) -K,(2aJ’P)K, (2aw–u)–

1
*K; (2ati-u)7

a’cr u
(2am-u)2 I

I

+ [Ko(u)*Ko(2aw–u )] Ko(2aw–u) . (20b)



CHEW AND KONG: DISPERS1ON CHARACTERISTICS OF OPEN WIDE MICROSTRIP LINES 937

%f

4 w IN mm

7

6
[

5

I

JANSEN’S RESULTS
--- EIGENEQUATION I
— EIGENEQUATION 2

I I 1 1 1 i 1 1 !

02 46810121416
FREQUENCY IN GHz

Fig. 2. ceff as a function of frequency for various 8 and different

approxrmations to the eigenequatlon.

A

II - 6, =97
~ ,4575mm

10 - ~ =064mm
8=014

9 -
EHO

8
‘X EHI

:.(

~,-”
,.-

7
,.

/’

6

5

/

EH2

4

3

2 JANSEN’S RESULTS
— EIGENEQUATION
--- ASYMPTOTIC FORMULA

024681012141618
FREQUENCY IN GHz
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crepancies that ensue are small, and incidentally, it agrees

better with Jansen’s numerical results compared to when

the full eigenequation (20) is solved for c, (eigenequation

2). Even though the asymptotic eigenequation (20) is good

when 8-O, we note that excellent agreement with numeri-

cal result is obtained even when 8 ~ 0.8.

In Fig. 3, the asymptotic eigenequation (20) is solved for

the effective permittivity of the even and odd modes. The’

results agree very well with Jansen’s. For such a value of 8,

the results are not drastically affected even if the integral

term in (20) is neglected. We note that the asymptotic

formula is excellent for such a 8 for the even modes while

the asymptotic formula for the odd mode is good when the

frequency is lower.

In conclusion, we have derived through the method of

matched asymptotic expansions, asymptotic eigenequations

for the even and odd modes on a microstrip line. For

convenience, we can neglect a complicated term in the

equations and the resultant equations, which are simple

and do not involve any integration give results which are

valid even when d/W= 0.8. As opposed to past methods

whose eigenequations usually involve integrations, our ei-

genequation contains modified Bessel functions whose

polynomial approximations are well known [20].

From the analysis, we notice that for a guided mode, c=

is always real if c? is real, implying that a guided wave does

not radiate if its phase velocity is slower than that of region

O. This is analogous to the guided modes in a dielectric

slab. However, equation (20) does not preclude the possi-

bility of complex roots for real t, analogous to the leaky

waves in a lossless dielectric slab. Also when 8 + O, the

leading order C. is that of a rectangular waveguide with

vertical magnetic wall. The first order correction is of

0(8 in 8) which vanishes slowly when d + O. This indicates

the importance of the fringing field whose effect lingers on

when 8 + O. From our exterior solution, we note that the

exterior fields are describable by cylindrical waves. When

the wave is guided, the cylindrical waves are evanescent in

nature representable by modified Bessel functions. This

explains the presence of modified Bessel functions in the

eigenequations. The decay of the evanescent wave from the

microstrip line is proportional to the frequency and

the contrast in the phase velocity of the guided wave and a

wave in medium zero, in other words, the decay rate

i—. SO if the frequency is high, and,ora-~ p(6e–l)60

<e – 1 is large, the shielding of the microstrip line is unnec-

essary since the field is localized around the microstrip line.

We can account for the dielectric loss in our approach by

letting c, be complex, since in our analysis, f, is not

restricted to be pure real. In our anadysis, we have ap-

proximated our edge solution with a two term quasistatic

approximation. This is legitimate as long as the frequency

is not too high such that the height of the microstrip line is

not comparable to the wavelength. Our formula is asymp-

totic in the sense that for ~, W, and c, fixed, the result is

asymptotically good when d+ O.

APPENDIX A— POTENTIALS FOR EDGE SOLUTIONS

The potential $$”)(~,) and rjj”)(c,) of (7)–(9) are given as

.exp[–a(Z– l)+iAX]dA (Al)

M G-( A,cr)C+\o)(cr)=&/ -m AG-(0, c,)

[

. exp[a(Z–l)] –exp[–2a–rx(Z-1)]

l–exp–2a I
.exp[iAX]dA (A.2)

.[aexp[iAX-a(Z- l)]+l]dA (A.3)

co G-( A,cr)+[?(+; /-eoA2G_(0, cr)

[

exp[rx(Z- l)]+exp [--2a -a(Z- l)]
-a

l–exp–2a
1

.exp[iAX]–l\dA
J (A.4)
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-, and G-(L f,) is described inwhere a=lim~.o A where A and pz are defined previously. This suggests that

[17]-[18]. We note that the exterior solutions are of the form

The boundary conditions for the fields can be expressed
APPENDIX B— HIGHER ORDER APPROXIMATION in terms of the y-components of the fields since they

The forms of higher order solutions in the exterior region uniquely determine the other components through the

can be deduced by observing the higher order exterior equation

expansion of the edge solutions which are derived to be

[15], [17]
&~=-!.- (kyv&+upv. x~y).

k,? –k2
(B.5)

.,.-y

(x–w z
h ——Oy W8 ‘ W8) For example, the vanishing of the tangential ~-field in

layer- 1 at z= O implies that
E. COS(k@ )

- —mw [ k&4–k~(lnr+l) EIY(z=O)=O
ULL%’

(. k($-k+ )
(X-w)w

yr
P;

‘:( ,,)k~ –k2c
r

“[

z +x—w
~tan–l — —
P2 x—w P;

1

($W
.ln(p2/W) –~

r

[
. (k~A–k~c,(lnr+ l))

;HIY(z=O)=O. (B.6)

The continuity of tangential E field at z= d is the same as

EOY(z=d)=EIY(z=d) (B.7a)

[
kj ky$EIY(z=d)

1[–up+H1v(z=d) =k?P ky;Eoy(z=d)

–~p~Hoy(z=d) 1
(B.7b)

where kP is defined in ( 14b) and k 1P= (~. The

continuity of tangential ~ field at z= d for Ix I> W, after

using an equation dual to (B.5), implies that

}

HoY(z=d)=HIY(z=d), IxI>W (B.8a)

k [
k: ky+H1y(z=d) +ticoc,;EIY(z=d) 1—ii E. sin klXW, (3+() (B.1)

(

x—w z

–)

=k~P[ky~HoY(z=d) +tico+Eoy(z=d)],

eoy WC?‘ W?l

{

kYEocos(k/XW) c$lna
--( fr-l):+g

Ikl>w. (B.8b)
-i($w 77 r r By Taylor expanding (B.7) and (B.8) about z= O, we

[

substitute in the perturbation series suggested by (B.3) and
.(6, -1) ~wtan-’~w (B.4) for fields in layer O and 1 (except we assume that

E[~) # O). By matching terms of the same order, we can

–~ln#–
?r(x-w)

P2 f; I

(B.2)

show from (B.7) that

&H$)(z=O)=O

$H$)(z=O)=O, all x (13.9a)
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and

.Efy(z=o)- w-$

“[ k:P
H$)(z=o)- #zy .1(o)(Z=()),

lp

allx. (B.9b)

By making use of the result of (B.8) and Hehnholtz wave

equation, we conclude that (B.9b) simplifies to

(–)k:W 1–(,
lH$)(x, z=o)=-T 6,

az

a2HA:)(X, Z=o),.—

ax2

lX[>~. (B.9c)

For Ix I< W, we can show from (B.7a) that (t3/i3z)EfjJ(z =

O)= O. Hence, the boundary condition for (B.9b) is

a2
@)(x, z=o)&$ Yxjz=@=v-@Joy

+k;WH$)(.x, z=()), [X[<~. (B.9d)

Similarly, from (B.7a), (B.8), and Maxwell equations, we

have

Efy(z=o)=o

E$(z=o)=o, all x (B.10a)

and

p)iupW ~ IIg(x, Z=o),
q;)(z=(j)=

Ixl>w
Cr

o, Ixl<w.

(B.10b)

It can be shown that the j-components of the first order

fields that satisfy the boundary conditions (B.9), (B.1O),

and the matching conditions provided by (B. 1) and (B.2)

are

~(1) = kPW2Eocos(k1XW)

Oy 2qmc,
(k:–k; q)

“[

x+W (I) k
~~1 ( pd+cw@)(kpp2) 1(B.11)

P2

~(,) = _ kykpW2Eocos(k1XW)

Oy 2mr
(,,-1)

-(:~f’’(kpPl)+:~[l)(kpP2 )). (B12)

The preceding resembles fields due to two parallel lines of

magnetic and electric dipoles. The solutions of the second

order fields that satisfy boundary conditions (B.9) and

(B.1O) and the matching condition provided by (B.1) and

(B.2) are derived as

{Jk; W2Eocos(k1XW) k2 ~
~$;) = db[H#)(kP(W+b))

4iup “ p –w

k: –k2c

–H$)(kp(W-b))] I&(kpp’)+ 6, y r

[f [
_> @)(kP(W+b))+Hf)(kp(W-b))]

‘, ;m kpf’) + * j.ww~~

“[

==~qo)(kp~2) 11X+w~[’)(kp~l)+(w–b)P2

(W+b)pl

( )f

+ 4ik~ 1–c, ~ ~k g
——
~k~ ~r –CO x k:

.sin(kXW)exp (ikXx+ikzz)

–-#- [kj(A+ln2)-kj~, (ln2n+ l)]
pr

“[

X–w (1) k
—~1 ( ,P2)*wfql)(kpp J+ P2 1](B.13)

PI

kjW2kyEocos(k1XW) i
~~;) =

2C, {!
w db#r-u _w ,

.[@’)(kp(w+b))+ @(kP(W-b))]3@1’
P’

(6,-1) w
~Hf*)(kppl). (kpp’)- ~k ./”wdb[#I~ PI

P

1
+— 1(6,-1)

——l@)(kpp2) – kp
W– b P2

“[

x+W (I) k
~% ( pPl)–

X—w (I) k
~~1 ( PP2) 1

-*[zt-6,(ln7r+l) -(c, -l)ln2]
P

[
zHf)(kppl)+Z.— z lff)(kpp~ )]} (B.14)
P1

r_-where p’= (x–b) +Z where b is the integration vari-

able in (B. 13) and (B. 14), and kz = (H. The last

integrals in (B. 13) and (B. 14) are needed to cancel the

infinite terms in the preceding integrals and the last terms

are eigensolutions needed to satisfy the matching condi-

tions. We note that the zeroth- and fimt-order fields are

due to the sources at the edges of the microstrip line while

the second-order fields have contributions from sources

distributed over the strh as well. With the higher order.
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exterior solutions derived, we can find the higher order

edge solutions from the edge expansions of the exterior

solutions, which are

HOY( W+ 8 WX, 8 WZ ) - tlllf~) + tlzln Nlfjl + 82H&

i8wE~cos k~xw

{[

8k W
-— kj ln(X2+Z2)1’2+ln~

Tap

1+~(H$)(2kPW)-l)+y +81n8

ikPW(k; —k;cr ) mk; W w

J
Hf1)(2kPW)+8~ _wdb

2C,

@J1)(kP(W+b))-M$ l)(kP(w-b))]

i3vk:W

(
k: –k2cyr )

.@(kP(W-b))+~

“[ [
J

_w’db Hf)(kp( W+b))H/l)(kP(W–b))

–Hf’)(2kPW)Hf)( kP(W-b))

+ 2i ~f)(2kPw)
+Hfl)(kP(W–b))2

~kP W+ b

4 1 [~f’)(2kPw)q$l)(zkpw)–1+
m-2k; (W-b)2 – ‘P

(

_ g In %?w )1 ]2
~+y +—

T 7r2k; W

()

vikPk~W e, — 1
+8 z —

Cr
exp(2ikPW)

8 WikP
- ~ [k~(A+ln2)-kjcr(ln2 m+l)]Hf1)(2kPW)

r

k: –k:cr

[

Xln(X2 +Z2)1’2+Ztan-1 ~

Tc , X2 +22
1

()

1–6, z
+k; —

1
–[ k;A –k;er

Cr X2 +22 – 776,

vik~

“ (ln~+ 0] ~2:z2 ~~~ W’w’)(%w)

k:–k2c
+(3 W~Hf)(2kPW)

y r

Cr

)
I

I.ln(X2+Z2)1’2 , S+o (B.15)

and

EOY( W+ 8 WX, 8 WZ ) =82 in &E&) + 8 2E~~)

i8kyWEOcos klXW

T%,

,{

Xtan-l ~ –Zln(X2 +22)1/2
. (Er-l)

X2 +22

+[A–~,(lnn+ l)] X2~z2

vikp

z (c, - l)Hf1)(2kpW)–tiw—

( )]o tan–l Z–~ ,
x

8+0. (B.16)

From (B. 15) and (B. 16), we deduce that the edge solutions

are of the form

h,y =~h$) +82h$;) (B.17)

eiY = 8e$j) + 82e~j). (B.18)

The first-order edge solutions for the y-component of the

fields that satisfy (6), the boundary condition and the

matching conditions provided by (B. 15) and (B. 16) are

e$j) =kpkyW2EOcos (k1XW)Hf)(2kPW)

. [O:’) (C,= l)-O:l)(C,)] (B.19)

kpW2
h$;) =

~E,cos(k,xW)Hf) (2kPW)

o[k;tj;’)(cr)-k; t//)(6 r=l)] (B.20)

where

1 ‘(0)@J++(l-&z)
@f ’)(tr)=z ~

@f’)(e, )= ~ ,
z

1 @(”)(6J-z

+$ ’)(~r)= ++}(%)-;
r

+f)(~,)= ++ fk,)- ;. (B.21)
r r

To find the higher order interior solutions, we expand

the edge solutions (B. 17) and (B. 18) in the interior region.

It is found that only exponentially small higher order terms

are induced by the edge solutions. Therefore, the interior

solution is as given by (2)– (4). With the edge solution for

the h,v component g,iven by (B. 17), we can derive its
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exterior expansion leading to

hoy(x, z)

E~cos(k,xw)-~h$ +82h~] - –it$?$’
up lr

{

k: –k2c
“ k&4–kj(lnn+ l)+kjln(X2+Z2)1/2–

yr,

?rcr

“[

z –Iz+ x

X2 +22 ‘m x X2+22
ln(X2+Z2 )1121

1—

-[

[k&4 –kjc,(ln~+ 1)] x2~z2

T%r

+k;m(@)x2:z2 1+8 W: Hf)(2kPW)

“[

k; –k2c
y ‘ln(X2+Z2)112

<r

+ k;A 1}—–k;(lnm+l)-k;mX
Cr

iklX
- —EOsin(klXW), (X2+ Z2)’i2+C0. (J3.22)

lqL

Comparing (B.22) and (B. 15), and invoking the matching

condition, we can deduce an asymptotic eigenequation. We

can perform a similar analysis for. the odd modes. The

resultant asymptotic eigenequations are as given in (20).
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